Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning to Match for Multi-criteria Document Relevance (1409.6512v2)

Published 23 Sep 2014 in cs.IR

Abstract: In light of the tremendous amount of data produced by social media, a large body of research have revisited the relevance estimation of the users' generated content. Most of the studies have stressed the multidimensional nature of relevance and proved the effectiveness of combining the different criteria that it embodies. Traditional relevance estimates combination methods are often based on linear combination schemes. However, despite being effective, those aggregation mechanisms are not effective in real-life applications since they heavily rely on the non-realistic independence property of the relevance dimensions. In this paper, we propose to tackle this issue through the design of a novel fuzzy-based document ranking model. We also propose an automated methodology to capture the importance of relevance dimensions, as well as information about their interaction. This model, based on the Choquet Integral, allows to optimize the aggregated documents relevance scores using any target information retrieval relevance metric. Experiments within the TREC Microblog task and a social personalized information retrieval task highlighted that our model significantly outperforms a wide range of state-of-the-art aggregation operators, as well as a representative learning to rank methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.