Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximating Betweenness Centrality in Large Evolving Networks (1409.6241v1)

Published 22 Sep 2014 in cs.SI, cs.DS, and physics.soc-ph

Abstract: Betweenness centrality ranks the importance of nodes by their participation in all shortest paths of the network. Therefore computing exact betweenness values is impractical in large networks. For static networks, approximation based on randomly sampled paths has been shown to be significantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness centrality is known that improves on static recomputation. We address this deficit by proposing two incremental approximation algorithms (for weighted and unweighted connected graphs) which provide a provable guarantee on the absolute approximation error. Processing batches of edge insertions, our algorithms yield significant speedups up to a factor of $104$ compared to restarting the approximation. This is enabled by investing memory to store and efficiently update shortest paths. As a building block, we also propose an asymptotically faster algorithm for updating the SSSP problem in unweighted graphs. Our experimental study shows that our algorithms are the first to make in-memory computation of a betweenness ranking practical for million-edge semi-dynamic networks. Moreover, our results show that the accuracy is even better than the theoretical guarantees in terms of absolutes errors and the rank of nodes is well preserved, in particular for those with high betweenness.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.