Tropical Effective Primary and Dual Nullstellensätze (1409.6215v2)
Abstract: Tropical algebra is an emerging field with a number of applications in various areas of mathematics. In many of these applications appeal to tropical polynomials allows to study properties of mathematical objects such as algebraic varieties and algebraic curves from the computational point of view. This makes it important to study both mathematical and computational aspects of tropical polynomials. In this paper we prove a tropical Nullstellensatz and moreover we show an effective formulation of this theorem. Nullstellensatz is a natural step in building algebraic theory of tropical polynomials and its effective version is relevant for computational aspects of this field. On our way we establish a simple formulation of min-plus and tropical linear dualities. We also observe a close connection between tropical and min-plus polynomial systems.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.