Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Wireless networks appear Poissonian due to strong shadowing (1409.4739v2)

Published 16 Sep 2014 in cs.NI and math.PR

Abstract: Geographic locations of cellular base stations sometimes can be well fitted with spatial homogeneous Poisson point processes. In this paper we make a complementary observation: In the presence of the log-normal shadowing of sufficiently high variance, the statistics of the propagation loss of a single user with respect to different network stations are invariant with respect to their geographic positioning, whether regular or not, for a wide class of empirically homogeneous networks. Even in perfectly hexagonal case they appear as though they were realized in a Poisson network model, i.e., form an inhomogeneous Poisson point process on the positive half-line with a power-law density characterized by the path-loss exponent. At the same time, the conditional distances to the corresponding base stations, given their observed propagation losses, become independent and log-normally distributed, which can be seen as a decoupling between the real and model geometry. The result applies also to Suzuki (Rayleigh-log-normal) propagation model. We use Kolmogorov-Smirnov test to empirically study the quality of the Poisson approximation and use it to build a linear-regression method for the statistical estimation of the value of the path-loss exponent.

Citations (66)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.