Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Text mixing shapes the anatomy of rank-frequency distributions: A modern Zipfian mechanics for natural language (1409.3870v3)

Published 12 Sep 2014 in cs.CL and physics.soc-ph

Abstract: Natural languages are full of rules and exceptions. One of the most famous quantitative rules is Zipf's law which states that the frequency of occurrence of a word is approximately inversely proportional to its rank. Though this `law' of ranks has been found to hold across disparate texts and forms of data, analyses of increasingly large corpora over the last 15 years have revealed the existence of two scaling regimes. These regimes have thus far been explained by a hypothesis suggesting a separability of languages into core and non-core lexica. Here, we present and defend an alternative hypothesis, that the two scaling regimes result from the act of aggregating texts. We observe that text mixing leads to an effective decay of word introduction, which we show provides accurate predictions of the location and severity of breaks in scaling. Upon examining large corpora from 10 languages in the Project Gutenberg eBooks collection (eBooks), we find emphatic empirical support for the universality of our claim.

Citations (27)

Summary

We haven't generated a summary for this paper yet.