Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Knowledge-Enriched Path Computation (1409.2585v1)

Published 9 Sep 2014 in cs.DB

Abstract: Directions and paths, as commonly provided by navigation systems, are usually derived considering absolute metrics, e.g., finding the shortest path within an underlying road network. With the aid of crowdsourced geospatial data we aim at obtaining paths that do not only minimize distance but also lead through more popular areas using knowledge generated by users. We extract spatial relations such as "nearby" or "next to" from travel blogs, that define closeness between pairs of points of interest (PoIs) and quantify each of these relations using a probabilistic model. Subsequently, we create a relationship graph where each node corresponds to a PoI and each edge describes the spatial connection between the respective PoIs. Using Bayesian inference we obtain a probabilistic measure of spatial closeness according to the crowd. Applying this measure to the corresponding road network, we obtain an altered cost function which does not exclusively rely on distance, and enriches an actual road networks taking crowdsourced spatial relations into account. Finally, we propose two routing algorithms on the enriched road networks. To evaluate our approach, we use Flickr photo data as a ground truth for popularity. Our experimental results -- based on real world datasets -- show that the paths computed w.r.t.\ our alternative cost function yield competitive solutions in terms of path length while also providing more "popular" paths, making routing easier and more informative for the user.

Citations (12)

Summary

We haven't generated a summary for this paper yet.