Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Transfer Structured Output Learning (1409.1200v1)

Published 3 Sep 2014 in cs.LG

Abstract: In this paper, we propose the problem of domain transfer structured output learn- ing and the first solution to solve it. The problem is defined on two different data domains sharing the same input and output spaces, named as source domain and target domain. The outputs are structured, and for the data samples of the source domain, the corresponding outputs are available, while for most data samples of the target domain, the corresponding outputs are missing. The input distributions of the two domains are significantly different. The problem is to learn a predictor for the target domain to predict the structured outputs from the input. Due to the limited number of outputs available for the samples form the target domain, it is difficult to directly learn the predictor from the target domain, thus it is necessary to use the output information available in source domain. We propose to learn the target domain predictor by adapting a auxiliary predictor trained by using source domain data to the target domain. The adaptation is implemented by adding a delta function on the basis of the auxiliary predictor. An algorithm is developed to learn the parameter of the delta function to minimize loss functions associat- ed with the predicted outputs against the true outputs of the data samples with available outputs of the target domain.

Summary

We haven't generated a summary for this paper yet.