Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dimensionality Invariant Similarity Measure (1409.0923v1)

Published 2 Sep 2014 in cs.LG

Abstract: This paper presents a new similarity measure to be used for general tasks including supervised learning, which is represented by the K-nearest neighbor classifier (KNN). The proposed similarity measure is invariant to large differences in some dimensions in the feature space. The proposed metric is proved mathematically to be a metric. To test its viability for different applications, the KNN used the proposed metric for classifying test examples chosen from a number of real datasets. Compared to some other well known metrics, the experimental results show that the proposed metric is a promising distance measure for the KNN classifier with strong potential for a wide range of applications.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.