Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-rank Sparse Hierarchical Clustering (1409.0745v2)

Published 2 Sep 2014 in stat.ML and cs.LG

Abstract: There has been a surge in the number of large and flat data sets - data sets containing a large number of features and a relatively small number of observations - due to the growing ability to collect and store information in medical research and other fields. Hierarchical clustering is a widely used clustering tool. In hierarchical clustering, large and flat data sets may allow for a better coverage of clustering features (features that help explain the true underlying clusters) but, such data sets usually include a large fraction of noise features (non-clustering features) that may hide the underlying clusters. Witten and Tibshirani (2010) proposed a sparse hierarchical clustering framework to cluster the observations using an adaptively chosen subset of the features, however, we show that this framework has some limitations when the data sets contain clustering features with complex structure. In this paper, we propose the Multi-rank sparse hierarchical clustering (MrSHC). We show that, using simulation studies and real data examples, MrSHC produces superior feature selection and clustering performance comparing to the classical (of-the-shelf) hierarchical clustering and the existing sparse hierarchical clustering framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.