Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing Classic Closeness Centrality, at Scale (1409.0035v1)

Published 29 Aug 2014 in cs.DS

Abstract: Closeness centrality, first considered by Bavelas (1948), is an importance measure of a node in a network which is based on the distances from the node to all other nodes. The classic definition, proposed by Bavelas (1950), Beauchamp (1965), and Sabidussi (1966), is (the inverse of) the average distance to all other nodes. We propose the first highly scalable (near linear-time processing and linear space overhead) algorithm for estimating, within a small relative error, the classic closeness centralities of all nodes in the graph. Our algorithm applies to undirected graphs, as well as for centrality computed with respect to round-trip distances in directed graphs. For directed graphs, we also propose an efficient algorithm that approximates generalizations of classic closeness centrality to outbound and inbound centralities. Although it does not provide worst-case theoretical approximation guarantees, it is designed to perform well on real networks. We perform extensive experiments on large networks, demonstrating high scalability and accuracy.

Citations (95)

Summary

We haven't generated a summary for this paper yet.