Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GPGPU Computing (1408.6923v1)

Published 29 Aug 2014 in cs.DC

Abstract: Since the first idea of using GPU to general purpose computing, things have evolved over the years and now there are several approaches to GPU programming. GPU computing practically began with the introduction of CUDA (Compute Unified Device Architecture) by NVIDIA and Stream by AMD. These are APIs designed by the GPU vendors to be used together with the hardware that they provide. A new emerging standard, OpenCL (Open Computing Language) tries to unify different GPU general computing API implementations and provides a framework for writing programs executed across heterogeneous platforms consisting of both CPUs and GPUs. OpenCL provides parallel computing using task-based and data-based parallelism. In this paper we will focus on the CUDA parallel computing architecture and programming model introduced by NVIDIA. We will present the benefits of the CUDA programming model. We will also compare the two main approaches, CUDA and AMD APP (STREAM) and the new framwork, OpenCL that tries to unify the GPGPU computing models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.