Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Model of Consistent Node Types in Signed Directed Social Networks (1408.6822v1)

Published 28 Aug 2014 in cs.SI, physics.soc-ph, and stat.AP

Abstract: Signed directed social networks, in which the relationships between users can be either positive (indicating relations such as trust) or negative (indicating relations such as distrust), are increasingly common. Thus the interplay between positive and negative relationships in such networks has become an important research topic. Most recent investigations focus upon edge sign inference using structural balance theory or social status theory. Neither of these two theories, however, can explain an observed edge sign well when the two nodes connected by this edge do not share a common neighbor (e.g., common friend). In this paper we develop a novel approach to handle this situation by applying a new model for node types. Initially, we analyze the local node structure in a fully observed signed directed network, inferring underlying node types. The sign of an edge between two nodes must be consistent with their types; this explains edge signs well even when there are no common neighbors. We show, moreover, that our approach can be extended to incorporate directed triads, when they exist, just as in models based upon structural balance or social status theory. We compute Bayesian node types within empirical studies based upon partially observed Wikipedia, Slashdot, and Epinions networks in which the largest network (Epinions) has 119K nodes and 841K edges. Our approach yields better performance than state-of-the-art approaches for these three signed directed networks.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube