Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Finding Maximum k-Cliques Faster using Lazy Global Domination (1408.6485v1)

Published 27 Aug 2014 in cs.DS

Abstract: A clique in a graph is a set of vertices, each of which is adjacent to every other vertex in this set. A k-clique relaxes this requirement, requiring vertices to be within a distance k of each other, rather than directly adjacent. In theory, a maximum clique algorithm can easily be adapted to solve the maximum k-clique problem. We use a state of the art maximum clique algorithm to show that this is feasible in practice, and introduce a lazy global domination rule which sometimes vastly reduces the search space. We include experimental results for a range of real-world and benchmark graphs, and a detailed look at random graphs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.