Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ramanujan Complexes and bounded degree topological expanders (1408.6351v1)

Published 27 Aug 2014 in math.CO, cs.CC, math.GR, and math.GT

Abstract: Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.

Citations (46)

Summary

We haven't generated a summary for this paper yet.