Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exact Algorithms for Dominating Induced Matching Based on Graph Partition (1408.6196v1)

Published 26 Aug 2014 in cs.DS

Abstract: A dominating induced matching, also called an efficient edge domination, of a graph $G=(V,E)$ with $n=|V|$ vertices and $m=|E|$ edges is a subset $F \subseteq E$ of edges in the graph such that no two edges in $F$ share a common endpoint and each edge in $E\setminus F$ is incident with exactly one edge in $F$. It is NP-hard to decide whether a graph admits a dominating induced matching or not. In this paper, we design a $1.1467nn{O(1)}$-time exact algorithm for this problem, improving all previous results. This problem can be redefined as a partition problem that is to partition the vertex set of a graph into two parts $I$ and $F$, where $I$ induces an independent set (a 0-regular graph) and $F$ induces a perfect matching (a 1-regular graph). After giving several structural properties of the problem, we show that the problem always contains some "good vertices", branching on which by including them to either $I$ or $F$ we can effectively reduce the graph. This leads to a fast exact algorithm to this problem.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.