Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Location Estimation Using Crowdsourced Geospatial Narratives (1408.5894v1)

Published 25 Aug 2014 in cs.DB

Abstract: The "crowd" has become a very important geospatial data provider. Subsumed under the term Volunteered Geographic Information (VGI), non-expert users have been providing a wealth of quantitative geospatial data online. With spatial reasoning being a basic form of human cognition, narratives expressing geospatial experiences, e.g., travel blogs, would provide an even bigger source of geospatial data. Textual narratives typically contain qualitative data in the form of objects and spatial relationships. The scope of this work is (i) to extract these relationships from user-generated texts, (ii) to quantify them and (iii) to reason about object locations based only on this qualitative data. We use information extraction methods to identify toponyms and spatial relationships and to formulate a quantitative approach based on distance and orientation features to represent the latter. Positional probability distributions for spatial relationships are determined by means of a greedy Expectation Maximization-based (EM) algorithm. These estimates are then used to "triangulate" the positions of unknown object locations. Experiments using a text corpus harvested from travel blog sites establish the considerable location estimation accuracy of the proposed approach.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube