Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A new integral loss function for Bayesian optimization (1408.4622v1)

Published 20 Aug 2014 in stat.CO, cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of maximizing a real-valued continuous function $f$ using a Bayesian approach. Since the early work of Jonas Mockus and Antanas \v{Z}ilinskas in the 70's, the problem of optimization is usually formulated by considering the loss function $\max f - M_n$ (where $M_n$ denotes the best function value observed after $n$ evaluations of $f$). This loss function puts emphasis on the value of the maximum, at the expense of the location of the maximizer. In the special case of a one-step Bayes-optimal strategy, it leads to the classical Expected Improvement (EI) sampling criterion. This is a special case of a Stepwise Uncertainty Reduction (SUR) strategy, where the risk associated to a certain uncertainty measure (here, the expected loss) on the quantity of interest is minimized at each step of the algorithm. In this article, assuming that $f$ is defined over a measure space $(\mathbb{X}, \lambda)$, we propose to consider instead the integral loss function $\int_{\mathbb{X}} (f - M_n)_{+}\, d\lambda$, and we show that this leads, in the case of a Gaussian process prior, to a new numerically tractable sampling criterion that we call $\rm EI2$ (for Expected Integrated Expected Improvement). A numerical experiment illustrates that a SUR strategy based on this new sampling criterion reduces the error on both the value and the location of the maximizer faster than the EI-based strategy.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.