Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Motion Deblurring for Plenoptic Images (1408.3686v2)

Published 16 Aug 2014 in cs.CV

Abstract: We address for the first time the issue of motion blur in light field images captured from plenoptic cameras. We propose a solution to the estimation of a sharp high resolution scene radiance given a blurry light field image, when the motion blur point spread function is unknown, i.e., the so-called blind deconvolution problem. In a plenoptic camera, the spatial sampling in each view is not only decimated but also defocused. Consequently, current blind deconvolution approaches for traditional cameras are not applicable. Due to the complexity of the imaging model, we investigate first the case of uniform (shift-invariant) blur of Lambertian objects, i.e., when objects are sufficiently far away from the camera to be approximately invariant to depth changes and their reflectance does not vary with the viewing direction. We introduce a highly parallelizable model for light field motion blur that is computationally and memory efficient. We then adapt a regularized blind deconvolution approach to our model and demonstrate its performance on both synthetic and real light field data. Our method handles practical issues in real cameras such as radial distortion correction and alignment within an energy minimization framework.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube