Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FP//LINSPACE computability of Riemann zeta function in Ko-Friedman model (1408.2362v4)

Published 11 Aug 2014 in cs.CC

Abstract: In the present paper, we construct an algorithm for the evaluation of real Riemann zeta function $\zeta(s)$ for all real $s$, $s>1$, in polynomial time and linear space on Turing machines in Ko-Friedman model. The algorithms is based on a series expansion of real Riemann zeta function $\zeta(s)$ (the series globally convergents) and uses algorithms for the evaluation of real function $(1+x)h$ and hypergeometric series in polynomial time and linear space. The algorithm from the present paper modified in an obvious way to work with the complex numbers can be used to evaluate complex Riemann zeta function $\zeta(s)$ for $s=\sigma+\mathbf{i}t$, $\sigma\ne 1$ (so, also for the case of $\sigma<1$), in polynomial time and linear space in $n$ wherein $2{-n}$ is a precision of the computation; the modified algorithm will be also polynomial time and linear space in $\lceil \log_2(t)\rceil$ and exponential time and exponential space in $\lceil \log_2(\sigma)\rceil$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.