Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

LARSEN-ELM: Selective Ensemble of Extreme Learning Machines using LARS for Blended Data (1408.2003v2)

Published 9 Aug 2014 in cs.LG and stat.ML

Abstract: Extreme learning machine (ELM) as a neural network algorithm has shown its good performance, such as fast speed, simple structure etc, but also, weak robustness is an unavoidable defect in original ELM for blended data. We present a new machine learning framework called LARSEN-ELM for overcoming this problem. In our paper, we would like to show two key steps in LARSEN-ELM. In the first step, preprocessing, we select the input variables highly related to the output using least angle regression (LARS). In the second step, training, we employ Genetic Algorithm (GA) based selective ensemble and original ELM. In the experiments, we apply a sum of two sines and four datasets from UCI repository to verify the robustness of our approach. The experimental results show that compared with original ELM and other methods such as OP-ELM, GASEN-ELM and LSBoost, LARSEN-ELM significantly improve robustness performance while keeping a relatively high speed.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.