Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Preconditioned Krylov solvers for kernel regression (1408.1237v1)

Published 6 Aug 2014 in cs.NA

Abstract: A primary computational problem in kernel regression is solution of a dense linear system with the $N\times N$ kernel matrix. Because a direct solution has an O($N3$) cost, iterative Krylov methods are often used with fast matrix-vector products. For poorly conditioned problems, convergence of the iteration is slow and preconditioning becomes necessary. We investigate preconditioning from the viewpoint of scalability and efficiency. The problems that conventional preconditioners face when applied to kernel methods are demonstrated. A \emph{novel flexible preconditioner }that not only improves convergence but also allows utilization of fast kernel matrix-vector products is introduced. The performance of this preconditioner is first illustrated on synthetic data, and subsequently on a suite of test problems in kernel regression and geostatistical kriging.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube