Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Estimating Renyi Entropy of Discrete Distributions (1408.1000v3)

Published 2 Aug 2014 in cs.IT, cs.DS, cs.LG, and math.IT

Abstract: It was recently shown that estimating the Shannon entropy $H({\rm p})$ of a discrete $k$-symbol distribution ${\rm p}$ requires $\Theta(k/\log k)$ samples, a number that grows near-linearly in the support size. In many applications $H({\rm p})$ can be replaced by the more general R\'enyi entropy of order $\alpha$, $H_\alpha({\rm p})$. We determine the number of samples needed to estimate $H_\alpha({\rm p})$ for all $\alpha$, showing that $\alpha < 1$ requires a super-linear, roughly $k{1/\alpha}$ samples, noninteger $\alpha>1$ requires a near-linear $k$ samples, but, perhaps surprisingly, integer $\alpha>1$ requires only $\Theta(k{1-1/\alpha})$ samples. Furthermore, developing on a recently established connection between polynomial approximation and estimation of additive functions of the form $\sum_{x} f({\rm p}_x)$, we reduce the sample complexity for noninteger values of $\alpha$ by a factor of $\log k$ compared to the empirical estimator. The estimators achieving these bounds are simple and run in time linear in the number of samples. Our lower bounds provide explicit constructions of distributions with different R\'enyi entropies that are hard to distinguish.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.