Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A special role of Boolean quadratic polytopes among other combinatorial polytopes (1408.0948v2)

Published 5 Aug 2014 in cs.CC and math.CO

Abstract: We consider several families of combinatorial polytopes associated with the following NP-complete problems: maximum cut, Boolean quadratic programming, quadratic linear ordering, quadratic assignment, set partition, set packing, stable set, 3-assignment. For comparing two families of polytopes we use the following method. We say that a family $P$ is affinely reduced to a family $Q$ if for every polytope $p\in P$ there exists $q\in Q$ such that $p$ is affinely equivalent to $q$ or to a face of $q$, where $\dim q = O((\dim p)k)$ for some constant $k$. Under this comparison the above-mentioned families are splitted into two equivalence classes. We show also that these two classes are simpler (in the above sence) than the families of poytopes of the following problems: set covering, traveling salesman, 0-1 knapsack problem, 3-satisfiability, cubic subgraph, partial ordering. In particular, Boolean quadratic polytopes appear as faces of polytopes in every of the mentioned families.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)