Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A special role of Boolean quadratic polytopes among other combinatorial polytopes (1408.0948v2)

Published 5 Aug 2014 in cs.CC and math.CO

Abstract: We consider several families of combinatorial polytopes associated with the following NP-complete problems: maximum cut, Boolean quadratic programming, quadratic linear ordering, quadratic assignment, set partition, set packing, stable set, 3-assignment. For comparing two families of polytopes we use the following method. We say that a family $P$ is affinely reduced to a family $Q$ if for every polytope $p\in P$ there exists $q\in Q$ such that $p$ is affinely equivalent to $q$ or to a face of $q$, where $\dim q = O((\dim p)k)$ for some constant $k$. Under this comparison the above-mentioned families are splitted into two equivalence classes. We show also that these two classes are simpler (in the above sence) than the families of poytopes of the following problems: set covering, traveling salesman, 0-1 knapsack problem, 3-satisfiability, cubic subgraph, partial ordering. In particular, Boolean quadratic polytopes appear as faces of polytopes in every of the mentioned families.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.