Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spectral Approaches to Nearest Neighbor Search (1408.0751v1)

Published 4 Aug 2014 in cs.DS

Abstract: We study spectral algorithms for the high-dimensional Nearest Neighbor Search problem (NNS). In particular, we consider a semi-random setting where a dataset $P$ in $\mathbb{R}d$ is chosen arbitrarily from an unknown subspace of low dimension $k\ll d$, and then perturbed by fully $d$-dimensional Gaussian noise. We design spectral NNS algorithms whose query time depends polynomially on $d$ and $\log n$ (where $n=|P|$) for large ranges of $k$, $d$ and $n$. Our algorithms use a repeated computation of the top PCA vector/subspace, and are effective even when the random-noise magnitude is {\em much larger} than the interpoint distances in $P$. Our motivation is that in practice, a number of spectral NNS algorithms outperform the random-projection methods that seem otherwise theoretically optimal on worst case datasets. In this paper we aim to provide theoretical justification for this disparity.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.