Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spectral Approaches to Nearest Neighbor Search (1408.0751v1)

Published 4 Aug 2014 in cs.DS

Abstract: We study spectral algorithms for the high-dimensional Nearest Neighbor Search problem (NNS). In particular, we consider a semi-random setting where a dataset $P$ in $\mathbb{R}d$ is chosen arbitrarily from an unknown subspace of low dimension $k\ll d$, and then perturbed by fully $d$-dimensional Gaussian noise. We design spectral NNS algorithms whose query time depends polynomially on $d$ and $\log n$ (where $n=|P|$) for large ranges of $k$, $d$ and $n$. Our algorithms use a repeated computation of the top PCA vector/subspace, and are effective even when the random-noise magnitude is {\em much larger} than the interpoint distances in $P$. Our motivation is that in practice, a number of spectral NNS algorithms outperform the random-projection methods that seem otherwise theoretically optimal on worst case datasets. In this paper we aim to provide theoretical justification for this disparity.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.