Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Moving Least Squares Based Approach for Contour Visualization of Multi-Dimensional Data (1408.0677v1)

Published 4 Aug 2014 in cs.GR

Abstract: Analysis of high dimensional data is a common task. Often, small multiples are used to visualize 1 or 2 dimensions at a time, such as in a scatterplot matrix. Associating data points between different views can be difficult though, as the points are not fixed. Other times, dimensional reduction techniques are employed to summarize the whole dataset in one image, but individual dimensions are lost in this view. In this paper, we present a means of augmenting a dimensional reduction plot with isocontours to reintroduce the original dimensions. By applying this to each dimension in the original data, we create multiple views where the points are consistent, which facilitates their comparison. Our approach employs a combination of a novel, graph-based projection technique with a GPU accelerated implementation of moving least squares to interpolate space between the points. We also present evaluations of this approach both with a case study and with a user study.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.