Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Adaptive Wavelet Based Identification and Extraction of PQRST Combination in Randomly Stretching ECG Sequence (1408.0453v1)

Published 3 Aug 2014 in cs.CV

Abstract: Cardiovascular system study using ECG signals have evolved tremendously in the domain of electronics and signal processing. However, there are certain floating challenges unresolved in the analysis and detection of abnormal performances of cardiovascular system. As the medical field is moving towards more automated and intelligent systems, wrong detection or wrong interpretations of ECG waveform of abnormal conditions can be quite fatal. Since the PQRST signals vary their positions randomly, the process of locating, identifying and classifying each feature can be cumbersome and it is prone to errors. Here we present an automated scheme using adaptive wavelet to detect prominent R-peak with extreme accuracy and algorithmically tag and mark the coexisting peaks P, Q, S, and T with almost same accuracy. The adaptive wavelet approach used in this scheme is capable of detecting R-peak in ECG with 99.99% accuracy along with the rest of the waveforms.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.