Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive Attacker Strategy Development Against Moving Target Cyber Defenses (1407.8540v1)

Published 31 Jul 2014 in cs.CR and cs.GT

Abstract: A model of strategy formulation is used to study how an adaptive attacker learns to overcome a moving target cyber defense. The attacker-defender interaction is modeled as a game in which a defender deploys a temporal platform migration defense. Against this defense, a population of attackers develop strategies specifying the temporal ordering of resource investments that bring targeted zero-day exploits into existence. Attacker response to two defender temporal platform migration scheduling policies are examined. In the first defender scheduling policy, the defender selects the active platform in each match uniformly at random from a pool of available platforms. In the second policy the defender schedules each successive platform to maximize the diversity of the source code presented to the attacker. Adaptive attacker response strategies are modeled by finite state machine (FSM) constructs that evolve during simulated play against defender strategies via an evolutionary algorithm. It is demonstrated that the attacker learns to invest heavily in exploit creation for the platform with the least similarity to other platforms when faced with a diversity defense, while avoiding investment in exploits for this least similar platform when facing a randomization defense. Additionally, it is demonstrated that the diversity-maximizing defense is superior for shorter duration attacker-defender engagements, but performs sub-optimally in extended attacker-defender interactions.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.