Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimal Hub Labeling is NP-complete (1407.8373v1)

Published 31 Jul 2014 in cs.CC and cs.DS

Abstract: Distance labeling is a preprocessing technique introduced by Peleg [Journal of Graph Theory, 33(3)] to speed up distance queries in large networks. Herein, each vertex receives a (short) label and, the distance between two vertices can be inferred from their two labels. One such preprocessing problem occurs in the hub labeling algorithm [Abraham et al., SODA'10]: the label of a vertex v is a set of vertices x (the "hubs") with their distance d(x,v) to v and the distance between any two vertices u and v is the sum of their distances to a common hub. The problem of assigning as few such hubs as possible was conjectured to be NP-hard, but no proof was known to date. We give a reduction from the well-known Vertex Cover problem on graphs to prove that finding an optimal hub labeling is indeed NP-hard.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)