Efficient Approximation of Quantum Channel Capacities (1407.8202v1)
Abstract: We propose an iterative method for approximating the capacity of classical-quantum channels with a discrete input alphabet and a finite dimensional output, possibly under additional constraints on the input distribution. Based on duality of convex programming, we derive explicit upper and lower bounds for the capacity. To provide an $\varepsilon$-close estimate to the capacity, the presented algorithm requires $O(\tfrac{(N \vee M) M3 \log(N){1/2}}{\varepsilon})$, where $N$ denotes the input alphabet size and $M$ the output dimension. We then generalize the method for the task of approximating the capacity of classical-quantum channels with a bounded continuous input alphabet and a finite dimensional output. For channels with a finite dimensional quantum mechanical input and output, the idea of a universal encoder allows us to approximate the Holevo capacity using the same method. In particular, we show that the problem of approximating the Holevo capacity can be reduced to a multidimensional integration problem. For families of quantum channels fulfilling a certain assumption we show that the complexity to derive an $\varepsilon$-close solution to the Holevo capacity is subexponential or even polynomial in the problem size. We provide several examples to illustrate the performance of the approximation scheme in practice.
- David Sutter (40 papers)
- Tobias Sutter (32 papers)
- Peyman Mohajerin Esfahani (63 papers)
- Renato Renner (105 papers)