Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Traffic Load Balancing Framework for Software-defined Radio Access Networks Powered by Hybrid Energy Sources (1407.7780v3)

Published 29 Jul 2014 in cs.NI

Abstract: Dramatic mobile data traffic growth has spurred a dense deployment of small cell base stations (SCBSs). Small cells enhance the spectrum efficiency and thus enlarge the capacity of mobile networks. Although SCBSs consume much less power than macro BSs (MBSs) do, the overall power consumption of a large number of SCBSs is phenomenal. As the energy harvesting technology advances, base stations (BSs) can be powered by green energy to alleviate the on-grid power consumption. For mobile networks with high BS density, traffic load balancing is critical in order to exploit the capacity of SCBSs. To fully utilize harvested energy, it is desirable to incorporate the green energy utilization as a performance metric in traffic load balancing strategies. In this paper, we have proposed a traffic load balancing framework that strives a balance between network utilities, e.g., the average traffic delivery latency, and the green energy utilization. Various properties of the proposed framework have been derived. Leveraging the software-defined radio access network architecture, the proposed scheme is implemented as a virtually distributed algorithm, which significantly reduces the communication overheads between users and BSs. The simulation results show that the proposed traffic load balancing framework enables an adjustable trade-off between the on-grid power consumption and the average traffic delivery latency, and saves a considerable amount of on-grid power, e.g., 30%, at a cost of only a small increase, e.g., 8%, of the average traffic delivery latency.

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.