Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform recovery of fusion frame structured sparse signals (1407.7680v1)

Published 29 Jul 2014 in cs.IT and math.IT

Abstract: We consider the problem of recovering fusion frame sparse signals from incomplete measurements. These signals are composed of a small number of nonzero blocks taken from a family of subspaces. First, we show that, by using a-priori knowledge of a coherence parameter associated with the angles between the subspaces, one can uniformly recover fusion frame sparse signals with a significantly reduced number of vector-valued (sub-)Gaussian measurements via mixed l1/l2-minimization. We prove this by establishing an appropriate version of the restricted isometry property. Our result complements previous nonuniform recovery results in this context, and provides stronger stability guarantees for noisy measurements and approximately sparse signals. Second, we determine the minimal number of scalar-valued measurements needed to uniformly recover all fusion frame sparse signals via mixed l1/l2-minimization. This bound is achieved by scalar-valued subgaussian measurements. In particular, our result shows that the number of scalar-valued subgaussian measurements cannot be further reduced using knowledge of the coherence parameter. As a special case it implies that the best known uniform recovery result for block sparse signals using subgaussian measurements is optimal.

Citations (28)

Summary

We haven't generated a summary for this paper yet.