Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Quantizer Design for Distributed Bayesian Estimation in Sensor Networks (1407.7152v1)

Published 26 Jul 2014 in cs.IT, math.IT, and stat.ME

Abstract: We consider the problem of distributed estimation under the Bayesian criterion and explore the design of optimal quantizers in such a system. We show that, for a conditionally unbiased and efficient estimator at the fusion center and when local observations have identical distributions, it is optimal to partition the local sensors into groups, with all sensors within a group using the same quantization rule. When all the sensors use identical number of decision regions, use of identical quantizers at the sensors is optimal. When the network is constrained by the capacity of the wireless multiple access channel over which the sensors transmit their quantized observations, we show that binary quantizers at the local sensors are optimal under certain conditions. Based on these observations, we address the location parameter estimation problem and present our optimal quantizer design approach. We also derive the performance limit for distributed location parameter estimation under the Bayesian criterion and find the conditions when the widely used threshold quantizer achieves this limit. We corroborate this result using simulations. We then relax the assumption of conditionally independent observations and derive the optimality conditions of quantizers for conditionally dependent observations. Using counter-examples, we also show that the previous results do not hold in this setting of dependent observations and, therefore, identical quantizers are not optimal.

Citations (38)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.