Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

"Your click decides your fate": Leveraging clickstream patterns from MOOC videos to infer students' information processing & attrition behavior (1407.7143v1)

Published 26 Jul 2014 in cs.HC and cs.CY

Abstract: With an expansive and ubiquitously available gold mine of educational data, Massive Open Online courses (MOOCs) have become the an important foci of learning analytics research. The hope is that this new surge of development will bring the vision of equitable access to lifelong learning opportunities within practical reach. MOOCs offer many valuable learning experiences to students, from video lectures, readings, assignments and exams, to opportunities to connect and collaborate with others through threaded discussion forums and other Web 2.0 technologies. Nevertheless, despite all this potential, MOOCs have so far failed to produce evidence that this potential is being realized in the current instantiation of MOOCs. In this work, we primarily explore video lecture interaction in Massive Open Online Courses (MOOCs), which is central to student learning experience on these educational platforms. As a research contribution, we operationalize video lecture clickstreams of students into behavioral actions, and construct a quantitative information processing index, that can aid instructors to better understand MOOC hurdles and reason about unsatisfactory learning outcomes. Our results illuminate the effectiveness of developing such a metric inspired by cognitive psychology, towards answering critical questions regarding students' engagement, their future click interactions and participation trajectories that lead to in-video dropouts. We leverage recurring click behaviors to differentiate distinct video watching profiles for students in MOOCs. Additionally, we discuss about prediction of complete course dropouts, incorporating diverse perspectives from statistics and machine learning, to offer a more nuanced view into how the second generation of MOOCs be benefited, if course instructors were to better comprehend factors that lead to student attrition.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)