Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning in games via reinforcement and regularization (1407.6267v2)

Published 23 Jul 2014 in math.OC, cs.GT, and cs.LG

Abstract: We investigate a class of reinforcement learning dynamics where players adjust their strategies based on their actions' cumulative payoffs over time - specifically, by playing mixed strategies that maximize their expected cumulative payoff minus a regularization term. A widely studied example is exponential reinforcement learning, a process induced by an entropic regularization term which leads mixed strategies to evolve according to the replicator dynamics. However, in contrast to the class of regularization functions used to define smooth best responses in models of stochastic fictitious play, the functions used in this paper need not be infinitely steep at the boundary of the simplex; in fact, dropping this requirement gives rise to an important dichotomy between steep and nonsteep cases. In this general framework, we extend several properties of exponential learning, including the elimination of dominated strategies, the asymptotic stability of strict Nash equilibria, and the convergence of time-averaged trajectories in zero-sum games with an interior Nash equilibrium.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
Citations (7)

Summary

We haven't generated a summary for this paper yet.