Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Block Bayesian Sparse Learning Algorithms With Application to Estimating Channels in OFDM Systems (1407.6085v1)

Published 23 Jul 2014 in cs.IT and math.IT

Abstract: Cluster-sparse channels often exist in frequencyselective fading broadband communication systems. The main reason is received scattered waveform exhibits cluster structure which is caused by a few reflectors near the receiver. Conventional sparse channel estimation methods have been proposed for general sparse channel model which without considering the potential cluster-sparse structure information. In this paper, we investigate the cluster-sparse channel estimation (CS-CE) problems in the state of the art orthogonal frequencydivision multiplexing (OFDM) systems. Novel Bayesian clustersparse channel estimation (BCS-CE) methods are proposed to exploit the cluster-sparse structure by using block sparse Bayesian learning (BSBL) algorithm. The proposed methods take advantage of the cluster correlation in training matrix so that they can improve estimation performance. In addition, different from our previous method using uniform block partition information, the proposed methods can work well when the prior block partition information of channels is unknown. Computer simulations show that the proposed method has a superior performance when compared with the previous methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube