Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 51 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Redundancy of Exchangeable Estimators (1407.5383v4)

Published 21 Jul 2014 in cs.IT and math.IT

Abstract: Exchangeable random partition processes are the basis for Bayesian approaches to statistical inference in large alphabet settings. On the other hand, the notion of the pattern of a sequence provides an information-theoretic framework for data compression in large alphabet scenarios. Because data compression and parameter estimation are intimately related, we study the redundancy of Bayes estimators coming from Poisson-Dirichlet priors (or "Chinese restaurant processes") and the Pitman-Yor prior. This provides an understanding of these estimators in the setting of unknown discrete alphabets from the perspective of universal compression. In particular, we identify relations between alphabet sizes and sample sizes where the redundancy is small, thereby characterizing useful regimes for these estimators.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.