Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

How the Experts Algorithm Can Help Solve LPs Online (1407.5298v2)

Published 20 Jul 2014 in cs.DS and math.OC

Abstract: We consider the problem of solving packing/covering LPs online, when the columns of the constraint matrix are presented in random order. This problem has received much attention and the main focus is to figure out how large the right-hand sides of the LPs have to be (compared to the entries on the left-hand side of the constraints) to allow $(1+\epsilon)$-approximations online. It is known that the right-hand sides have to be $\Omega(\epsilon{-2} \log m)$ times the left-hand sides, where $m$ is the number of constraints. In this paper we give a primal-dual algorithm that achieve this bound for mixed packing/covering LPs. Our algorithms construct dual solutions using a regret-minimizing online learning algorithm in a black-box fashion, and use them to construct primal solutions. The adversarial guarantee that holds for the constructed duals helps us to take care of most of the correlations that arise in the algorithm; the remaining correlations are handled via martingale concentration and maximal inequalities. These ideas lead to conceptually simple and modular algorithms, which we hope will be useful in other contexts.

Citations (47)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.