Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Pixels to Voxels: Modeling Visual Representation in the Human Brain (1407.5104v1)

Published 18 Jul 2014 in q-bio.NC, cs.CV, and cs.NE

Abstract: The human brain is adept at solving difficult high-level visual processing problems such as image interpretation and object recognition in natural scenes. Over the past few years neuroscientists have made remarkable progress in understanding how the human brain represents categories of objects and actions in natural scenes. However, all current models of high-level human vision operate on hand annotated images in which the objects and actions have been assigned semantic tags by a human operator. No current models can account for high-level visual function directly in terms of low-level visual input (i.e., pixels). To overcome this fundamental limitation we sought to develop a new class of models that can predict human brain activity directly from low-level visual input (i.e., pixels). We explored two classes of models drawn from computer vision and machine learning. The first class of models was based on Fisher Vectors (FV) and the second was based on Convolutional Neural Networks (ConvNets). We find that both classes of models accurately predict brain activity in high-level visual areas, directly from pixels and without the need for any semantic tags or hand annotation of images. This is the first time that such a mapping has been obtained. The fit models provide a new platform for exploring the functional principles of human vision, and they show that modern methods of computer vision and machine learning provide important tools for characterizing brain function.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.