Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SoundLoc: Acoustic Method for Indoor Localization without Infrastructure (1407.4409v1)

Published 16 Jul 2014 in cs.HC

Abstract: Identifying locations of occupants is beneficial to energy management in buildings. A key observation in indoor environment is that distinct functional areas are typically controlled by separate HVAC and lighting systems and room level localization is sufficient to provide a powerful tool for energy usage reduction by occupancy-based actuation of the building facilities. Based upon this observation, this paper focuses on identifying the room where a person or a mobile device is physically present. Existing room localization methods, however, require special infrastructure to annotate rooms. SoundLoc is a room-level localization system that exploits the intrinsic acoustic properties of individual rooms and obviates the needs for infrastructures. As we show in the study, rooms' acoustic properties can be characterized by Room Impulse Response (RIR). Nevertheless, obtaining precise RIRs is a time-consuming and expensive process. The main contributions of our work are the following. First, a cost-effective RIR measurement system is implemented and the Noise Adaptive Extraction of Reverberation (NAER) algorithm is developed to estimate room acoustic parameters in noisy conditions. Second, a comprehensive physical and statistical analysis of features extracted from RIRs is performed. Also, SoundLoc is evaluated using the dataset consisting of ten (10) different rooms. The overall accuracy of 97.8% achieved demonstrates the potential to be integrated into automatic mapping of building space.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.