2000 character limit reached
Positive semidefinite rank (1407.4095v1)
Published 15 Jul 2014 in math.OC, cs.DM, and math.CO
Abstract: Let M be a p-by-q matrix with nonnegative entries. The positive semidefinite rank (psd rank) of M is the smallest integer k for which there exist positive semidefinite matrices $A_i, B_j$ of size $k \times k$ such that $M_{ij} = \text{trace}(A_i B_j)$. The psd rank has many appealing geometric interpretations, including semidefinite representations of polyhedra and information-theoretic applications. In this paper we develop and survey the main mathematical properties of psd rank, including its geometry, relationships with other rank notions, and computational and algorithmic aspects.