Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Computable Jordan Decomposition of Linear Continuous Functionals on $C[0;1]$ (1407.3679v2)

Published 14 Jul 2014 in cs.LO and math.FA

Abstract: By the Riesz representation theorem using the Riemann-Stieltjes integral, linear continuous functionals on the set of continuous functions from the unit interval into the reals can either be characterized by functions of bounded variation from the unit interval into the reals, or by signed measures on the Borel-subsets. Each of these objects has an (even minimal) Jordan decomposition into non-negative or non-decreasing objects. Using the representation approach to computable analysis, a computable version of the Riesz representation theorem has been proved by Jafarikhah, Lu and Weihrauch. In this article we extend this result. We study the computable relation between three Banach spaces, the space of linear continuous functionals with operator norm, the space of (normalized) functions of bounded variation with total variation norm, and the space of bounded signed Borel measures with variation norm. We introduce natural representations for defining computability. We prove that the canonical linear bijections between these spaces and their inverses are computable. We also prove that Jordan decomposition is computable on each of these spaces.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube