Papers
Topics
Authors
Recent
2000 character limit reached

Sub-linear Upper Bounds on Fourier dimension of Boolean Functions in terms of Fourier sparsity (1407.3500v1)

Published 13 Jul 2014 in cs.CC

Abstract: We prove that the Fourier dimension of any Boolean function with Fourier sparsity $s$ is at most $O\left(s{2/3}\right)$. Our proof method yields an improved bound of $\widetilde{O}(\sqrt{s})$ assuming a conjecture of Tsang~\etal~\cite{tsang}, that for every Boolean function of sparsity $s$ there is an affine subspace of $\mathbb{F}_2n$ of co-dimension $O(\poly\log s)$ restricted to which the function is constant. This conjectured bound is tight upto poly-logarithmic factors as the Fourier dimension and sparsity of the address function are quadratically separated. We obtain these bounds by observing that the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision tree complexity, and then bounding the latter.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.