Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

From Social Network to Semantic Social Network in Recommender System (1407.3392v2)

Published 12 Jul 2014 in cs.SI and cs.IR

Abstract: Due the success of emerging Web 2.0, and different social network Web sites such as Amazon and movie lens, recommender systems are creating unprecedented opportunities to help people browsing the web when looking for relevant information, and making choices. Generally, these recommender systems are classified in three categories: content based, collaborative filtering, and hybrid based recommendation systems. Usually, these systems employ standard recommendation methods such as artificial neural networks, nearest neighbor, or Bayesian networks. However, these approaches are limited compared to methods based on web applications, such as social networks or semantic web. In this paper, we propose a novel approach for recommendation systems called semantic social recommendation systems that enhance the analysis of social networks exploiting the power of semantic social network analysis. Experiments on real-world data from Amazon examine the quality of our recommendation method as well as the performance of our recommendation algorithms.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.