Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hidden Markov Model Based Part of Speech Tagger for Sinhala Language (1407.2989v1)

Published 10 Jul 2014 in cs.CL

Abstract: In this paper we present a fundamental lexical semantics of Sinhala language and a Hidden Markov Model (HMM) based Part of Speech (POS) Tagger for Sinhala language. In any Natural Language processing task, Part of Speech is a very vital topic, which involves analysing of the construction, behaviour and the dynamics of the language, which the knowledge could utilized in computational linguistics analysis and automation applications. Though Sinhala is a morphologically rich and agglutinative language, in which words are inflected with various grammatical features, tagging is very essential for further analysis of the language. Our research is based on statistical based approach, in which the tagging process is done by computing the tag sequence probability and the word-likelihood probability from the given corpus, where the linguistic knowledge is automatically extracted from the annotated corpus. The current tagger could reach more than 90% of accuracy for known words.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.