Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proving differential privacy in Hoare logic (1407.2988v1)

Published 10 Jul 2014 in cs.LO and cs.CR

Abstract: Differential privacy is a rigorous, worst-case notion of privacy-preserving computation. Informally, a probabilistic program is differentially private if the participation of a single individual in the input database has a limited effect on the program's distribution on outputs. More technically, differential privacy is a quantitative 2-safety property that bounds the distance between the output distributions of a probabilistic program on adjacent inputs. Like many 2-safety properties, differential privacy lies outside the scope of traditional verification techniques. Existing approaches to enforce privacy are based on intricate, non-conventional type systems, or customized relational logics. These approaches are difficult to implement and often cumbersome to use. We present an alternative approach that verifies differential privacy by standard, non-relational reasoning on non-probabilistic programs. Our approach transforms a probabilistic program into a non-probabilistic program which simulates two executions of the original program. We prove that if the target program is correct with respect to a Hoare specification, then the original probabilistic program is differentially private. We provide a variety of examples from the differential privacy literature to demonstrate the utility of our approach. Finally, we compare our approach with existing verification techniques for privacy.

Citations (60)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.