Approximate Range Emptiness in Constant Time and Optimal Space (1407.2907v1)
Abstract: This paper studies the \emph{$\varepsilon$-approximate range emptiness} problem, where the task is to represent a set $S$ of $n$ points from ${0,\ldots,U-1}$ and answer emptiness queries of the form "$[a ; b]\cap S \neq \emptyset$ ?" with a probability of \emph{false positives} allowed. This generalizes the functionality of \emph{Bloom filters} from single point queries to any interval length $L$. Setting the false positive rate to $\varepsilon/L$ and performing $L$ queries, Bloom filters yield a solution to this problem with space $O(n \lg(L/\varepsilon))$ bits, false positive probability bounded by $\varepsilon$ for intervals of length up to $L$, using query time $O(L \lg(L/\varepsilon))$. Our first contribution is to show that the space/error trade-off cannot be improved asymptotically: Any data structure for answering approximate range emptiness queries on intervals of length up to $L$ with false positive probability $\varepsilon$, must use space $\Omega(n \lg(L/\varepsilon)) - O(n)$ bits. On the positive side we show that the query time can be improved greatly, to constant time, while matching our space lower bound up to a lower order additive term. This result is achieved through a succinct data structure for (non-approximate 1d) range emptiness/reporting queries, which may be of independent interest.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.