Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

FIR Digital Filter Design by Sampled-Data H-infinity Discretization (1407.2415v1)

Published 9 Jul 2014 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: FIR (finite impulse response) digital filter design is a fundamental problem in signal processing. In particular, FIR approximation of analog filters (or systems) is ubiquitous not only in signal processing but also in digital implementation of controllers. In this article, we propose a new design method of an FIR digital filter that optimally approximates a given analog filter in the sense of minimizing the H-infinity norm of the sampled-data error system. By using the lifting technique and the KYP (Kalman-Yakubovich-Popov) lemma, we reduce the H-infinity optimization to a convex optimization described by an LMI (linear matrix inequality). We also extend the method to multi-rate and multi-delay systems. A design example is shown to illustrate the effectiveness of the proposed method.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.