Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The jump set under geometric regularisation. Part 2: Higher-order approaches (1407.2334v1)

Published 9 Jul 2014 in math.FA and cs.CV

Abstract: In Part 1, we developed a new technique based on Lipschitz pushforwards for proving the jump set containment property $\mathcal{H}{m-1}(J_u \setminus J_f)=0$ of solutions $u$ to total variation denoising. We demonstrated that the technique also applies to Huber-regularised TV. Now, in this Part 2, we extend the technique to higher-order regularisers. We are not quite able to prove the property for total generalised variation (TGV) based on the symmetrised gradient for the second-order term. We show that the property holds under three conditions: First, the solution $u$ is locally bounded. Second, the second-order variable is of locally bounded variation, $w \in \mbox{BV}_\mbox{loc}(\Omega; \mathbb{R}m)$, instead of just bounded deformation, $w \in \mbox{BD}(\Omega)$. Third, $w$ does not jump on $J_u$ parallel to it. The second condition can be achieved for non-symmetric TGV. Both the second and third condition can be achieved if we change the Radon (or $L1$) norm of the symmetrised gradient $Ew$ into an $Lp$ norm, $p>1$, in which case Korn's inequality holds. We also consider the application of the technique to infimal convolution TV, and study the limiting behaviour of the singular part of $D u$, as the second parameter of $\mbox{TGV}2$ goes to zero. Unsurprisingly, it vanishes, but in numerical discretisations the situation looks quite different. Finally, our work additionally includes a result on TGV-strict approximation in $\mbox{BV}(\Omega)$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.