A class of $p$-ary cyclic codes and their weight enumerators (1407.2032v1)
Abstract: Let $m$, $k$ be positive integers such that $\frac{m}{\gcd(m,k)}\geq 3$, $p$ be an odd prime and $\pi $ be a primitive element of $\mathbb{F}_{pm}$. Let $h_1(x)$ and $h_2(x)$ be the minimal polynomials of $-\pi{-1}$ and $\pi{-\frac{pk+1}{2}}$ over $\mathbb{F}_p$, respectively. In the case of odd $\frac{m}{\gcd(m,k)}$, when $k$ is even, $\gcd(m,k)$ is odd or when $\frac{k}{\gcd(m,k)}$ is odd, Zhou et~al. in \cite{zhou} obtained the weight distribution of a class of cyclic codes $\mathcal{C}$ over $\mathbb{F}_p$ with parity-check polynomial $h_1(x)h_2(x)$. In this paper, we further investigate this class of cyclic codes $\mathcal{C}$ over $\mathbb{F}_p$ in the rest case of odd $\frac{m}{\gcd(m,k)}$ and the case of even $\frac{m}{\gcd(m,k)}$. Moreover, we determine the weight distribution of cyclic codes $\mathcal{C}$.