Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Triadic closure as a basic generating mechanism of communities in complex networks (1407.1664v2)

Published 7 Jul 2014 in physics.soc-ph and cs.SI

Abstract: Most of the complex social, technological and biological networks have a significant community structure. Therefore the community structure of complex networks has to be considered as a universal property, together with the much explored small-world and scale-free properties of these networks. Despite the large interest in characterizing the community structures of real networks, not enough attention has been devoted to the detection of universal mechanisms able to spontaneously generate networks with communities. Triadic closure is a natural mechanism to make new connections, especially in social networks. Here we show that models of network growth based on simple triadic closure naturally lead to the emergence of community structure, together with fat-tailed distributions of node degree, high clustering coefficients. Communities emerge from the initial stochastic heterogeneity in the concentration of links, followed by a cycle of growth and fragmentation. Communities are the more pronounced, the sparser the graph, and disappear for high values of link density and randomness in the attachment procedure. By introducing a fitness-based link attractivity for the nodes, we find a novel phase transition, where communities disappear for high heterogeneity of the fitness distribution, but a new mesoscopic organization of the nodes emerges, with groups of nodes being shared between just a few superhubs, which attract most of the links of the system.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.